Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioresour Technol ; 142: 361-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23748084

RESUMO

Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent.


Assuntos
Ascomicetos/metabolismo , Reatores Biológicos , Resíduos Industriais , Indústria Têxtil , Phanerochaete
2.
Appl Biochem Biotechnol ; 163(7): 928-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20890779

RESUMO

Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Madeira/metabolismo , Biocatálise , Biocombustíveis , Reatores Biológicos , Biotecnologia , Fermentação , Hidrólise , Resíduos Industriais , Lignina/química , Lignina/metabolismo , Polissacarídeos/metabolismo , Ácidos Sulfúricos/química , Madeira/química , Xilose/metabolismo
3.
Braz. j. microbiol ; 41(3): 685-693, Oct. 2010. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-549410

RESUMO

The influence of different nutrients on biosurfactant production by Rhodococcus erythropolis was investigated. Increasing the concentration of phosphate buffer from 30 up through 150 mmol/L stimulated an increase in biosurfactant production, which reached a maximum concentration of 285 mg/L in shaken flasks. Statistical analysis showed that glycerol, NaNO3,MgSO4 and yeast extract had significant effects on production. The results were confirmed in a batchwise bioreactor, and semi-growth-associated production was detected. Reduction in the surface tension, which indicates the presence of biosurfactant, reached a value of 38 mN/m at the end of 35 hours. Use of the produced biosurfactant for washing crude oil-contaminated soil showed that 2 and 4 times the critical micellar concentration (CMC) were able to remove 97 and 99 percent of the oil, respectively, after 1 month of impregnation.


Assuntos
Arquivos , Biodegradação Ambiental , Indústria Química , Remoção de Contaminantes , Hidrocarbonetos , Petróleo/classificação , Petróleo/efeitos adversos , Rhodococcus/química , Interpretação Estatística de Dados , Métodos , Toxicidade
4.
Braz J Microbiol ; 41(3): 685-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031544

RESUMO

The influence of different nutrients on biosurfactant production by Rhodococcus erythropolis was investigated. Increasing the concentration of phosphate buffer from 30 up through 150 mmol/L stimulated an increase in biosurfactant production, which reached a maximum concentration of 285 mg/L in shaken flasks. Statistical analysis showed that glycerol, NaNO3, MgSO4 and yeast extract had significant effects on production. The results were confirmed in a batchwise bioreactor, and semi-growth-associated production was detected. Reduction in the surface tension, which indicates the presence of biosurfactant, reached a value of 38 mN/m at the end of 35 hours. Use of the produced biosurfactant for washing crude oil-contaminated soil showed that 2 and 4 times the critical micellar concentration (CMC) were able to remove 97 and 99% of the oil, respectively, after 1 month of impregnation.

5.
Braz. arch. biol. technol ; 52(5): 1279-1284, Sept.-Oct. 2009. tab, ilus
Artigo em Inglês | LILACS | ID: lil-536405

RESUMO

The aim of this study was to investigate the potential of degradation of an autochthonous bacterial strain, isolated from petroleum derivatives contaminated soil samples against jet fuel hydrocarbons. The autochthonous bacterial strain was characterized as Nocardia sp. Evaluation of their degrading abilities was carried out by presumptive assays as redox indicator test and by observations of surface tension decreases in aqueous medium. Degradation of jet fuel hydrocarbons was evaluated by chromatographic methods. Experiments were performed in flasks at two biostimulation rates. A bacterial strain of Pseudomonas aeruginosa UFPEDA 39 was utilized as a reference microorganism. The bacterial strain, identified as Nocardia sp, demonstrate high ability to degrade jet fuel compounds as well as to produce surface active compounds when compared to the reference microrganism.


O presente estudo objetivou a investigação da capacidade degradadora de uma linhagem bacteriana autóctone (isolada de amostras de solo contaminadas com derivados de petróleo) contra hidrocarbonetos de querosene de aviação. A linhagem foi caracterizada como Nocardia sp. A avaliação do seu potencial degradador deu-se realizada mediante testes com indicador redox e observações na redução da tensão superficial na fase aquosa. A degradação do querosene foi avaliada por métodos cromatográficos. Os experimentos foram realizados utilizando-se duas taxas de bioestímulo. Uma linhagem bacteriana Pseudomonas aeruginosa UFPEDA 39 foi utilizada como referência. A linhagem autóctone demonstrou alta eficiência na degradação de hidrocarbonetos do querosene bem como para produzir compostos ativos de superfície quando comparada com a linhagem de referência.

6.
Braz. arch. biol. technol ; 50(1): 147-152, Jan. 2007. graf
Artigo em Inglês | LILACS | ID: lil-452559

RESUMO

The aim of this work was to investigate the potential of the diesel oil degrading yeasts to use them in bioremediation of areas contaminated by this pollutant. The cultures, identified as Rhodotorula aurantiaca UFPEDA 845 and Candida ernobii UFPEDA 862, were selected at the initial stage. In the course of the biodegradation assays, C. ernobii degraded tetradecane, 5 methyl-octane and octadecane completely and decane (60.8 percent) and nonane (21.4 percent) partially whilst R. aurantiaca presented degradation percentages of 93 percent for decane, 38.4 percent for nonane and 22.9 percent for dodecane.


O objetivo deste trabalho foi investigar a potencialidade de leveduras que degradam óleo Diesel, visando aplicação em processo de biorremediação de áreas impactadas pelo referido poluente. As culturas, identificadas como Rhodotorula aurantiaca UFPEDA 845 e Candida ernobii UFPEDA 862, foram as selecionadas na etapa inicial. Quanto aos ensaios de biodegradabilidade, a levedura Candida ernobii UFPEDA 862 degradou totalmente: tetradecano, 5 metil-octano e octadecano, e parcialmente decano (60,8 por cento) e nonano (21,4 por cento), enquanto que a Rhodotorula aurantiaca UFPEDA 845 apresentou percentuais de degradação de 93,0 por cento para decano, 38,4 por cento para nonano e 22,9 por cento para dodecano.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...